Abstract

BackgroundOur aim was to differentiate human (h) embryonic stem (ES) cells into lung epithelial lineage-specific cells [i.e., alveolar epithelial type I (AEI) and type II (AEII) cells and Clara cells] as the first step in the development of cell-based strategies to repair lung injury in the bleomycin mouse model of idiopathic pulmonary fibrosis (IPF). A heterogeneous population of non-ciliated lung lineage-specific cells was derived by a novel method of embryoid body (EB) differentiation. This differentiated human cell population was used to modulate the profibrotic phenotype in transplanted animals.Methodology and Principal FindingsOmission or inclusion of one or more components in the differentiation medium skewed differentiation of H7 hES cells into varying proportions of AEI, AEII, and Clara cells. ICG-001, a small molecule inhibitor of Wnt/β-catenin/Creb-binding protein (CBP) transcription, changed marker expression of the differentiated ES cells from an AEII-like phenotype to a predominantly AEI-like phenotype. The differentiated cells were used in xenograft transplantation studies in bleomycin-treated Rag2γC−/− mice. Human cells were detected in lungs of the transplanted groups receiving differentiated ES cells treated with or without ICG-001. The increased lung collagen content found in bleomycin-treated mice receiving saline was significantly reduced by transplantation with the lung-lineage specific epithelial cells differentiated from ES cells. A significant increase in progenitor number was observed in the airways of bleomycin-treated mice after transplantation of differentiated hES cells.ConclusionsThis study indicates that ES cell-based therapy may be a powerful novel approach to ameliorate lung fibrosis.

Highlights

  • The pulmonary system is composed of a variety of epithelial cell populations residing in distinct anatomical locations

  • This study indicates that embryonic stem (ES) cell-based therapy may be a powerful novel approach to ameliorate lung fibrosis

  • Cells from the Human embryonic stem (hES) cell line H7 were differentiated in vitro into three lung lineage-specific epithelial cells: alveolar epithelial type I (AEI) cells, AEII cells, and Clara cells as described below. These cells expressed, both intracellularly and on their surface, characteristic marker proteins, detected by fluorescence-activated cell sorting (FACS) and immunofluorescence (IF) microscopy, the mRNA for which were concomitantly over-expressed as detected by quantitative realtime PCR

Read more

Summary

Introduction

The pulmonary system is composed of a variety of epithelial cell populations residing in distinct anatomical locations. Functions of AEII cells include the secretion and reuptake of pulmonary surfactant [4], regulation of alveolar fluid, and synthesis of immunomodulatory proteins [e.g., surfactant protein (SP)-A, SP-D] important for host defense [5]. Our aim was to differentiate human (h) embryonic stem (ES) cells into lung epithelial lineage-specific cells [i.e., alveolar epithelial type I (AEI) and type II (AEII) cells and Clara cells] as the first step in the development of cell-based strategies to repair lung injury in the bleomycin mouse model of idiopathic pulmonary fibrosis (IPF). A heterogeneous population of non-ciliated lung lineage-specific cells was derived by a novel method of embryoid body (EB) differentiation. This differentiated human cell population was used to modulate the profibrotic phenotype in transplanted animals

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call