Abstract

Glycosphingolipids (GSLs) are ubiquitous components of cell membranes that can act as mediators of cell adhesion and signal transduction and possibly be used as cell type-specific markers. A systematic survey of expression profiles of GSLs in human embryonic stem cell (hESC) lines and various differentiated derivatives was carried out using immunofluorescence, flow cytometry, and MALDI-MS and MS/MS analyses. In the undifferentiated hESCs, in addition to the well-known hESC-specific markers, SSEA-3 and SSEA-4, we identified several globosides and lacto-series GSLs, previously unrevealed in hESCs, including Gb4Cer, Lc4Cer, fucosyl Lc4Cer, Globo H, and disialyl Gb5Cer. During differentiation of hESC into embryoid body (EB) outgrowth cells, MS analyses revealed a clear-cut switch in the core structures of GSLs from globo- and lacto- to ganglio-series. To further clarify alterations is correlated with lineage-specific differentiation, we analyzed changes in GSL compositions as hESCs differentiated into neural progenitors or endodermal cells. During differentiation into neural progenitor cells, we found that the core structures of GSLs switched to mostly ganglio-series dominated by GD3. On the other hand, when hESCs differentiated into endodermal cells, patterns of GSLs were totally different from those observed in EB outgrowth or neural progenitors. The most prominent GSL identified by MALDI-MS and MS/SM analysis was Gb4Cer, without any appreciable amount of SSEA-3 and 4 antigens, or GD3, in endodermal cells. We also demonstrated that such a switch in GSL profiling was attributable to altered expression of key glycosyltransferases (GTs) in the biosynthetic pathways, suggesting a close association of GSLs with lineage specificity and differentiation of hESCs. Therefore, these results provide new insights into the unique stage-specific transition and mechanism for alterations of GSL core structures during hESC differentiation.KeywordsNeural Progenitor CellEmbryoid BodyhESC LineDefinitive EndodermBreast Cancer Stem CellThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.