Abstract

It has been proposed that human embryonic stem cells could be used to provide an inexhaustible supply of differentiated cell types for the study of disease processes. Although methods for differentiating embryonic stem cells into specific cell types have become increasingly sophisticated, the utility of the resulting cells for modeling disease has not been determined. We have asked whether specific neuronal subtypes produced from human embryonic stem cells can be used to investigate the mechanisms leading to neural degeneration in amyotrophic lateral sclerosis (ALS). We show that human spinal motor neurons, but not interneurons, are selectively sensitive to the toxic effect of glial cells carrying an ALS-causing mutation in the SOD1 gene. Our findings demonstrate the relevance of these non-cell-autonomous effects to human motor neurons and more broadly demonstrate the utility of human embryonic stem cells for studying disease and identifying potential therapeutics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.