Abstract

IntroductionCardiac safety is of paramount importance in contemporary drug development. Efficient and sensitive evaluation of cardiac safety in the research and development of new molecular agents begins with preclinical in-vitro models. A new model that is currently under evaluation is the human embryonic stem-cell derived cardiac myocytes (hESC-CM) (Peng, Lacerda, Kirsch, Brown, & Bruening-Wright, 2010). MethodshESC-CM were exposed in-vitro to 15 test compounds, and action potentials (AP) recorded with perforated patch-clamp technique to assess changes in AP duration (APD90) and upstroke velocity (Vmax). The test compounds included: 10 hERG channel, 4 Na+ channel, and 1 IKs channel inhibitors. For comparison purposes, the test compounds were evaluated in the isolated rabbit heart assay (IRH) to determine changes in conduction (QRS) and repolarization (QTc). Potency at hERG, NaV1.5 and IKs channel was also determined. ResultsFor 7 of 10 hERG channel inhibitors, the potency values across the three functional assays were similar (≤5-fold). Three compounds (dofetilide, sertindole, and terfenadine) showed >10-fold discrepancy between hERG potency and inhibitory concentrations in the hESC-CM and IRH assays. Of the four Na+ channel inhibitors, only mexiletine exhibited similar potency values across the three assays (~3-fold); the others exhibited marked variation (>10-fold) in inhibitory potency. No effect on repolarization was observed in hESC-CM treated with a potent IKs blocker, but QTc prolongation was evident in the IRH. DiscussionThe functional data indicate that hESC-CM are sensitive for detecting repolarization delay induced by hERG channel blockade, and AP prolongation correlated with potency in the hERG channel and IRH assays. However, hESC-CM were less sensitive for detecting depolarizing delay by Na+ channel blockers, and unable to detect delayed repolarization caused by IKs blockade.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.