Abstract
Human DNA topoisomerase I is an essential enzyme involved in resolving the torsional stress associated with DNA replication, transcription, and chromatin condensation. The catalytic cycle of the enzyme consists of DNA cleavage to form a covalent enzyme-DNA intermediate, DNA relaxation, and finally, re-ligation of the phosphate backbone to restore the continuity of the DNA. Structure/function studies have elucidated a flexible enzyme that relaxes DNA through coordinated, controlled movements of distinct enzyme domains. The cellular roles of topoisomerase I are apparent throughout the nucleus, but the concentration of processes acting on ribosomal DNA results in topoisomerase I accumulation in the nucleolus. Although the activity of topoisomerase I is required in these processes, the enzyme can also have a deleterious effect on cells. In the event that the final re-ligation step of the reaction cycle is prevented, the covalent topoisomerase I-DNA intermediate becomes a toxic DNA lesion that must be repaired. The complexities of the relaxation reaction, the cellular roles, and the pathways that must exist to repair topoisomerase I-mediated DNA damage highlight the importance of continued study of this essential enzyme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.