Abstract

We propose the use of deep convolutional neural networks (DCNNs) for human detection and activity classification based on Doppler radar. Previously, proposed schemes for these problems remained in the conventional supervised learning paradigm that relies on the design of handcrafted features. Whereas these schemes attained high accuracy, the requirement for domain knowledge of each problem limits the scalability of the proposed schemes. In this letter, we present an alternative deep learning approach. We apply the DCNN, one of the most successful deep learning algorithms, directly to a raw micro-Doppler spectrogram for both human detection and activity classification problem. The DCNN can jointly learn the necessary features and classification boundaries using the measured data without employing any explicit features on the micro-Doppler signals. We show that the DCNN can achieve accuracy results of 97.6% for human detection and 90.9% for human activity classification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.