Abstract

Depotentiation (DP) is a crucial mechanism for the tuning of memory traces once LTP (Long Term Potentiation) has been induced via learning, artificial procedures, or other activities. Putative unuseful LTP might be abolished via this process. Its deficiency is thought to play a role in pathologies, such as drug induced dyskinesia. However, since it is thought that it represents a mechanism that is linked to the susceptibility to interference during consolidation of a memory trace, it is an important process to consider when therapeutic interventions, such as psychotherapy, are administered. Perhaps a person with an abnormal depotentiation is prone to lose learned effects very easily or on the other end of the spectrum is prone to overload with previously generated unuseful LTP. Perhaps this process partly explains why some disorders and patients are extremely resistant to therapy. The present study seeks to quantify the relationship between LTP and depotentiation in the human brain by using transcranial magnetic stimulation (TMS) over the cortex of healthy participants. The results provide further evidence that depotentiation can be quantified in humans by use of noninvasive brain stimulation techniques. They provide evidence that a nonfocal rhythmic on its own inefficient stimulation, such as a modified thetaburst stimulation, can depotentiate an associative, focal spike timing-dependent PAS (paired associative stimulation)-induced LTP. Therefore, the depotentiation-like process does not seem to be restricted to specific subgroups of synapses that have undergone LTP before. Most importantly, the induced LTP seems highly correlated with the amount of generated depotentiation in healthy individuals. This might be a phenomenon typical of health and might be distorted in brain pathologies, such as dystonia, or dyskinesias. The ratio of LTP/DP might be a valuable marker for potential distortions of persistence versus deletion of memory traces represented by LTP-like plasticity.

Highlights

  • Different methods of delivering magnetic stimulation can lead to shorter or more prolonged changes in synaptic excitability

  • The ratio of long term potentiation (LTP)/DP might be a valuable marker for potential distortions of persistence versus deletion of memory traces represented by LTP-like plasticity

  • Subjects were seated in a chair and electromyography (EMG) recordings were taken using silver/silver chloride (Ag–AgCl) disc surface cup electrodes from the right Abductor Pollicis Brevis muscle (APB) established as the target muscle

Read more

Summary

Introduction

Different methods of delivering magnetic stimulation can lead to shorter or more prolonged changes in synaptic excitability (neuroplasticity induction). One such method is transcranial magnetic stimulation (TMS). The availability of TMS to study mechanisms of brain reorganization is useful due to the technique’s ability to focally stimulate cortical regions such as the motor cortex and quantify the response from contralateral hand muscles. This allows for the noninvasive evaluation of changes in cortex excitability at the system level in humans [1].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call