Abstract

ObjectivesMesenchymal stem cells (MSCs) could regulate the function of various immune cells. It remains unclear whether MSCs additionally possess immunostimulatory properties. We investigated the impact of human MSCs on the responsiveness of primary natural killer (NK) cells in terms of induction of anti‐inflammatory purinergic signalling.Material and MethodsWe obtained human bone marrow mesenchymal stem cells (BMMSCs) and dental pulp stem cells (DPSCs). NK cells were isolated from peripheral blood of healthy volunteers. Activated NK cells were cultured with MSCs. Proliferation assay, apoptosis analysis, activating or inhibitory receptor expression and degranulation assay were used to explore NK cells’ function. High‐performance liquid chromatography was used to investigate the purinergic signalling in activated NK cells.ResultsBoth DPSCs and BMMSCs could impair proliferation and promote apoptosis of activated NK cells. Also, activated NK cells could cause DPSCs to lyse. Furthermore, the expression of activating NK cells’ receptors was decreased, but inhibitory receptors of NK cells were elevated following co‐cultivation. NK cells acquired CD73 expression, while MSCs could release ATP into the extracellular space where nucleotides were converted into adenosine (ADO) following co‐culture system. Under the existence of exogenous 2‐chloroadenosine (CADO), the cytotoxic capacity of NK cells was remarkably depressed in a concentration‐dependent manner.ConclusionsDPSCs and BMMSCs could depress NK cells’ function by hydrolysing ATP to ADO using CD39 and CD73 enzymatic activity. Our data suggested that DPSCs might represent a new strategy for treating immune‐related diseases by regulating previously unrecognized functions in innate immune responses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call