Abstract

Helicobacter pylori infection leads to chronic gastric inflammation. The current study determined the response of human APCs, NK cells, and T cells toward the bacteria in vitro. Human monocyte-derived dendritic cells (DC) were incubated with bacteria for 48 h. Intact H. pylori at a multitude of infection 5 stimulated the expression of MHC class II (4- to 7-fold), CD80, and CD86 B7 molecules (10- to 12-fold) and the CD83 costimulatory molecule (>30-fold) as well as IL-12 secretion (>50-fold) in DCs, and thereby, strongly induced their maturation and activation. CD56(+)/CD4(-) NK cells, as well as CD4(+)/CD45RA(+) naive T cells, were isolated and incubated with DCs pulsed with intact bacteria or different cellular fractions. Coculture of H. pylori-pulsed DCs with NK cells strongly potentiated the secretion of TNF-alpha and IFN-gamma. Coculture of naive T cells with H. pylori-pulsed DCs significantly enhanced TNF-alpha, IFN-gamma, and IL-2 secretion as well as T-bet mRNA levels, while GATA-3 mRNA was lowered. However, the effect appeared attenuated compared with coculture with Escherichia coli. A greater stimulation was seen with naive T cells and DCs pulsed with H. pylori membrane preparations. Intact H. pylori potently induced the maturation and activation of human monocyte-derived DC and thereby promote NK and Th1 effector responses. The strong activation of NK cells may be important for the innate immune response. Th1-polarized T cells were induced especially by incubation with membrane preparations of H. pylori, suggesting that membrane proteins may account for the specific adaptive immune response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call