Abstract

Pleasant brush therapies may benefit those with autism, trauma, and anxiety. While studies monitor brushing velocity, hand-delivery of brush strokes introduces variability. Detailed measurements of human-delivered brushing physics may help understand such variability and subsequent impact on receivers' perceived pleasantness. Herein, we instrument a brush with multi-axis force and displacement sensors to measure their physics as 12 participants pleasantly stroke a receiver's forearm. Algorithmic procedures identify skin contact, and define four stages of arrival, stroke, departure, and airtime between strokes. Torque magnitude, rather than force, is evaluated as a metric to minimize inertial noise, as it registers brush bend and orientation. Overall, the results of the naturally delivered brushing experiments indicate force and velocity values in the range of 0.4 N and 3-10 cm/s, in alignment with prior work. However, we observe significant variance between brushers across velocity, force, torque, and brushstroke length. Upon further analysis, torque and force measures are correlated, yet torque provides distinct information from velocity. In evaluating the receiver's response to individual differences between brushers of the preliminary case study, higher pleasantness is tied to lower mean torque, and lower instantaneous variance over the stroke duration. Torque magnitude appears to complement velocity's influence on perceived pleasantness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call