Abstract

Herpesviral DNA packaging is a complex process involving binding and cleavage of DNA containing the specific DNA-packaging motifs, pac1 and pac2, and packaging of the resulting unit-length genomes into preformed procapsids. This process is believed to be mediated by two packaging proteins, the terminase subunits. In the case of human cytomegalovirus the terminase consists of the proteins pUL56 and pUL89. While pUL56 (i) mediates the specific binding to pac sequences on the concatamers, (ii) provides energy for the translocation of the DNA to the procapsids and (iii) associates itself with the capsid for enabling the entry of the DNA into the procapsid, pUL89 is mainly required to effect DNA cleavage. Based on the limited efficacy of the current drugs ganciclovir, cidofovir and foscarnet, new antiviral therapeutics appear to be in demand. Inhibitors targeting pUL56 and/or pUL89 may offer an attractive alternative since mammalian cell DNA replication does not involve cleavage of concatameric DNA. Drugs targeted to terminase-like proteins should therefore be safe and highly selective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.