Abstract

The endoplasmic reticulum (ER) is a key organelle involved in sensing and responding to stressful conditions, including those resulting from infection of viruses, such as human cytomegalovirus (HCMV). Three signaling pathways collectively termed the unfolded protein response (UPR) are activated to resolve ER stress, but they will also lead to cell death if the stress cannot be alleviated. HCMV is able to modulate the UPR to promote its infection. The specific viral factors involved in such HCMV-mediated modulation, however, were unknown. We previously showed that HCMV protein pUL38 was required to maintain the viability of infected cells, and it blocked cell death induced by thapsigargin. Here, we report that pUL38 is an HCMV-encoded regulator to modulate the UPR. In infection, pUL38 allowed HCMV to upregulate phosphorylation of PKR-like ER kinase (PERK) and the alpha subunit of eukaryotic initiation factor 2 (eIF-2alpha), as well as induce robust accumulation of activating transcriptional factor 4 (ATF4), key components of the PERK pathway. pUL38 also allowed the virus to suppress persistent phosphorylation of c-Jun N-terminal kinase (JNK), which was induced by the inositol-requiring enzyme 1 pathway. In isolation, pUL38 overexpression elevated eIF-2alpha phosphorylation, induced ATF4 accumulation, limited JNK phosphorylation, and suppressed cell death induced by both thapsigargin and tunicamycin, two drugs that induce ER stress by different mechanisms. Importantly, ATF4 overexpression and JNK inhibition significantly reduced cell death in pUL38-deficient virus infection. Thus, pUL38 targets ATF4 expression and JNK activation, and this activity appears to be critical for protecting cells from ER stress induced by HCMV infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.