Abstract

Modulation of host DNA synthesis is essential for many viruses to establish productive infections and contributes to viral diseases. Human cytomegalovirus (HCMV), a large DNA virus, blocks host DNA synthesis and deregulates cell cycle progression. We report that pUL117, a viral protein that we recently identified, is required for HCMV to block host DNA synthesis. Mutant viruses in which pUL117 was disrupted, either by frame-shift mutation or by a protein destabilization-based approach, failed to block host DNA synthesis at times after 24 hours post infection in human foreskin fibroblasts. Furthermore, pUL117-deficient virus stimulated quiescent fibroblasts to enter S-phase, demonstrating the intrinsic ability of HCMV to promote host DNA synthesis, which was suppressed by pUL117. We examined key proteins known to be involved in inhibition of host DNA synthesis in HCMV infection, and found that many were unlikely involved in the inhibitory activity of pUL117, including geminin, cyclin A, and viral protein IE2, based on their expression patterns. However, the ability of HCMV to delay the accumulation of the mini-chromosome maintenance (MCM) complex proteins, represented by MCM2 and MCM4, and prevent their loading onto chromatin, was compromised in the absence of pUL117. When expressed alone, pUL117 slowed cell proliferation, delayed DNA synthesis, and inhibited MCM accumulation. Knockdown of MCM proteins by siRNA restored the ability of pUL117-deficient virus to block cellular DNA synthesis. Thus, targeting MCM complex is one mechanism pUL117 employs to help block cellular DNA synthesis during HCMV infection. Our finding substantiates an emerging picture that deregulation of MCM is a conserved strategy for many viruses to prevent host DNA synthesis and helps to elucidate the complex strategy used by a large DNA virus to modulate cellular processes to promote infection and pathogenesis.

Highlights

  • The manipulation of host DNA synthesis is a critical step for many DNA viruses, including human cytomegalovirus (HCMV), to establish productive infection leading to disease [1,2,3]

  • We previously discovered that pUL117 was required for the proper maturation of nuclear viral replication compartments and efficient Human cytomegalovirus (HCMV) infection in primary human foreskin fibroblasts (HFFs) [20]

  • To better define how pUL117 modulates host DNA synthesis, we examined its impact on the DNA profile of HFFs that were synchronized at G0 prior to HCMV infection, a condition that has been widely used to investigate the modulation of cell cycle and cellular DNA synthesis by HCMV

Read more

Summary

Introduction

The manipulation of host DNA synthesis is a critical step for many DNA viruses, including human cytomegalovirus (HCMV), to establish productive infection leading to disease [1,2,3]. It is proposed that such modulation allows the virus to divert resources, such as energy, nucleotide pools, and cellular DNA replication enzymes, exclusively for viral DNA replication. Consistent with this notion, cells that actively replicate their DNA fail to support a lytic HCMV infection. Instead, they progress through S phase and arrest at the G1-phase after mitosis to initiate HCMV replication [7,8]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call