Abstract

The most common adult primary brain tumor, glioblastoma (GBM), is characterized by fifteen months median patient survival and has no clear etiology. We and others have identified the presence of human cytomegalovirus (HCMV) gene products endogenously expressed in GBM tissue and primary cells, with a subset of viral genes being consistently expressed in most samples. Among these viral genes, several have important oncomodulatory properties, regulating tumor stemness, proliferation, immune evasion, invasion and angiogenesis. These findings lead us to hypothesize that a specific HCMV gene signature may be associated with GBM pathogenesis. To investigate this hypothesis, we used glioma cell lines and primary glioma stem-like cells (GSC) infected with clinical and laboratory HCMV strains and measured relative viral gene expression levels along several time points up to 15 weeks post-infection. While HCMV gene expression was detected in several infected glioma lines through week 5 post-infection, only HCMV-infected GSC expressed viral gene products 15 weeks post-infection. Efficiency of infection across time was higher in GSC compared to cell lines. Importantly, HCMV-infected GSC outlived their uninfected counterparts, and this extended survival was paralleled by increased tumorsphere frequency and upregulation of stemness regulators, such as SOX2, p-STAT3, and BMX (a novel HCMV target identified in this study). Interleukin 6 (IL-6) treatment significantly upregulated HCMV gene expression in long-term infected glioma cultures, suggesting that pro-inflammatory signaling in the tumor milieu may further augment HCMV gene expression and subsequent tumor progression driven by viral-induced cellular signaling. Together, our data support a critical role for long-term, low-level HCMV infection in promoting survival, stemness, and proliferation of GSC that could significantly contribute to GBM pathogenesis.

Highlights

  • Glioblastoma multiforme (GBM), a grade IV glioma, is the most aggressive and malignant type of brain tumor [1]

  • human cytomegalovirus (HCMV) gene expression in endogenously infected glioblastoma does not fit the classic definition of latency since most GBM samples described to date exhibit expression of IE1 (UL123), a lytic gene [6,7,8,9,10, 13]

  • A more suitable definition of HCMV infection in glioblastoma has been postulated as a chronic infection with viral gene expression but no cytopathic effect [15]

Read more

Summary

Introduction

Glioblastoma multiforme (GBM), a grade IV glioma, is the most aggressive and malignant type of brain tumor [1]. Glioma stem-like cells (GSC) constitute a small subset of tumor cells characterized by expression of various stem cell markers and endowed with tumor initiating capabilities (reviewed in [3]). GSC are resistant to radiation and chemotherapy and are primarily responsible for GBM recurrence [4]. There is an increased interest in elucidating the role of human cytomegalovirus (HCMV) in cancer since it has been associated with GBM and several other malignancies (reviewed in [5]). While the exact role of HCMV in GBM is still under investigation, evidence from several studies suggests that it might act as an oncomodulator, altering proliferative signaling, cell growth, angiogenesis, cell death, immune detection, and chromosome stability (reviewed in [15])

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call