Abstract

Polymorphic cytochrome P450 (P450) 2D6 (CYP2D6) metabolizes several classes of therapeutic drugs, endogenous neurochemicals, and toxins. A CYP2D6-humanized transgenic mouse line was previously developed to model CYP2D6-poor and -extensive metabolizer phenotypes. Human CYP2D6 was detected in the liver, kidney, and intestine of these animals. In this study, we investigated further the cellular expression and relative tissue levels of human CYP2D6 in these transgenic mice in liver, intestine, kidney, and brain. In addition, we compared this with the expression of mouse CYP2D enzymes in these organs. In humans, these organs are of interest with respect to P450-mediated drug metabolism, toxicity, and disease. The expression of human CYP2D6 and mouse CYP2D enzymes in humanized and wild-type mice was quantified by immunoblotting and detected at the cellular level by immunocytochemistry. The cell-specific expression of human CYP2D6 in liver, kidney, and intestine in humanized mice was similar to that reported in humans. The expression patterns of mouse CYP2D proteins were similar to those in humans in liver and kidney but substantially different in intestine. Human CYP2D6 was not detected in brain of transgenic mice. Mouse CYP2D proteins were detected in brain, allowing, for the first time, a direct comparison of CYP2D expression among mouse, rat, and human brain. This transgenic mouse model is useful for investigating CYP2D6-mediated metabolism in liver, kidney, and especially the intestine, where expression patterns demonstrated substantial species differences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.