Abstract
Three human cytochrome P450 1A1 (CYP1A1) allelic variants, namely wild-type (CYP1A1.1), CYP1A1.2 (I462V), and CYP1A1.4 (T461N), were expressed as C-terminal His-tagged fusions including a thrombin cleavage site in Spodoptera frugiperda insect cells by baculovirus infection. The variants were expressed with 30–90 nmol (1.8–5.4 mg) spectrally active cytochrome P450 per one liter of culture and purified to electrophoretic homogeneity by Ni–agarose chromatography. The recombinant variants were structurally characterized by UV/Vis, ultracentrifugation, and EPR. Optical and EPR spectra showed all three variants predominantly in high spin state; moreover, EPR indicated changes in the electronic structure of the heme iron of the two mutant variants. Sedimentation equilibrium experiments demonstrated the purified variants in dimeric state in the presence of 0.2% emulgen + 0.05% cholate. Higher detergent concentration, the presence of imidazole, and cleavage of the His-tag led to monomerization. Catalytic activity of all purified variants was reconstituted with purified human NADPH-P450 reductase and dilaurylphosphatidylcholine. Enzyme kinetics of ethoxyresorufin O-deethylation revealed similar K m ( ≈0.4 μM ) for all variants but slightly different V max values (CYP1A1.1: 4.2, CYP1A1.2: 7.0, and CYP1A1.4: 3.0 nmol/min/nmol CYP1A1). The extended C-terminus influenced the enzymatic activity only slightly. All three variants are able to produce significant amounts of all- trans-retinoic acid from all- trans-retinal with V max of 4.0, 3.3, and 5.6 nmol/min/nmol CYP1A1 and K m values of 111, 83, and 250 μM for CYP1A1.1, CYP1A1.2, and CYP1A1.4, respectively. Availability of the three purified human CYP1A1 variants should facilitate further characterization of their role in metabolism of endogenous and exogenous compounds as well as structural studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.