Abstract
This study explored the microstructure of human cranial bone at different ages, and the survival, remodelling and modelling of cranial bone grafts. A combination of reflection and fluorescence confocal optical microscopy and scanning electron microscopy in the backscattered electron imaging mode was employed to examine highly polished block faces of plastic-embedded bone fragments as harvested for grafting, or recovered after a period in situ as a graft. The methods enabled remarkably detailed information on bone content, maturation and turnover to be gleaned from tiny scraps of bone. Microfractures in the harvested bone were repaired at the graft site, with welding of old and new bone indicating revascularization. Human cranial bone grafts successfully stimulated bone cell differentiation, supported new bone formation on resorbed and unresorbed surfaces, and underwent bone turnover. The type and organization of new bone reflected the growth rate and maturation of the graft rather than the age of the patient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.