Abstract

Ambiguity, complexity, and diversity in natural language textual expressions are major hindrances to automated knowledge extraction. As a result state-of-the-art methods for extracting entities and relationships from unstructured data make incorrect extractions or produce noise. With the advent of human computing, computationally hard tasks have been addressed through human inputs. While textbased knowledge acquisition can benefit from this approach, humans alone cannot bear the burden of extracting knowledge from the vast textual resources that exist today. Even making payments for crowdsourced acquisition can quickly become prohibitively expensive. In this thesis we present principled methods that effectively garner human computing inputs for improving the extraction of knowledge-base facts from natural language texts. Our methods complement automatic extraction techniques with human computing to reap benefits of both while overcoming each other’s limitations. We present the architecture and implementation of HIGGINS , a system that combines an information extraction (IE) engine with a human computing (HC) engine to produce high quality facts. Using automated methods, the IE engine compiles dictionaries of entity names and relational phrases. It further combines statistics derived from large Web corpora with semantic resources like WordNet and ConceptNet to expand the dictionary of relational phrases. It employs specifically designed statistical language models for phrase relatedness to come up with questions and relevant candidate answers that are presented to human workers. Through extensive experiments we establish the superiority of this approach in extracting relation-centric facts from text. In our experiments we extract facts about fictitious characters in narrative text, where the issues of diversity and complexity in expressing relations are far more pronounced. Finally, we also demonstrate how interesting human computing games can be designed for knowledge acquisition tasks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.