Abstract

Understanding the factors that determine if a person can successfully learn a novel sensory skill is essential for understanding how the brain adapts to change, and for providing rehabilitative support for people with sensory loss. We report a training study investigating the effects of blindness and age on the learning of a complex auditory skill: click-based echolocation. Blind and sighted participants of various ages (21-79 yrs; median blind: 45 yrs; median sighted: 26 yrs) trained in 20 sessions over the course of 10 weeks in various practical and virtual navigation tasks. Blind participants also took part in a 3-month follow up survey assessing the effects of the training on their daily life. We found that both sighted and blind people improved considerably on all measures, and in some cases performed comparatively to expert echolocators at the end of training. Somewhat surprisingly, sighted people performed better than those who were blind in some cases, although our analyses suggest that this might be better explained by the younger age (or superior binaural hearing) of the sighted group. Importantly, however, neither age nor blindness was a limiting factor in participants' rate of learning (i.e. their difference in performance from the first to the final session) or in their ability to apply their echolocation skills to novel, untrained tasks. Furthermore, in the follow up survey, all participants who were blind reported improved mobility, and 83% reported better independence and wellbeing. Overall, our results suggest that the ability to learn click-based echolocation is not strongly limited by age or level of vision. This has positive implications for the rehabilitation of people with vision loss or in the early stages of progressive vision loss.

Highlights

  • There is a substantial body of research investigating how the brain adapts in the context of visual sensory deprivation

  • All were diagnosed as legally blind in childhood, with only two official diagnoses at an age that might have coincided with onset of puberty, or may have been after onset of puberty (i.e. 13 yrs and 10 yrs; BC6 and BC2), but again with vision impairment having been present from birth

  • Our blind participants reported in a follow-up survey that learning these skills made a positive impact on their mobility, independence and well-being

Read more

Summary

Introduction

There is a substantial body of research investigating how the brain adapts in the context of visual sensory deprivation (for reviews see [1,2,3,4,5,6,7,8]). From a basic science perspective, investigating how people learn to echolocate and how this is related to vision loss and other aspects of their hearing would provide information on how the brain adapts in response to sensory deprivation and to learning a new skill. This more general question was addressed in one previous training study in which sighted and blind people used a visual-to-tactile sensory substitution device. It was found that after 4 sessions, blind people performed better than sighted controls [30], suggesting that visual deprivation may put people at an advantage for learning a new sensory skill. Part of the data (sighted participants’ performance in the virtual training task) has been reported previously [28]

Ethics statement
Participants
46 Total blindness
Apparatus and procedures
Follow up survey
Data analysis
Statistical power
Training tasks
Discussion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call