Abstract
Chemokine receptors (CRs) are 7-helix membrane proteins from the family of G-protein coupled receptors (GPCRs). A few human CRs act as cofactors for macrophage-tropic (M-tropic) human immunodeficiency virus type-1 (HIV-1) entry into cells, while others do not. In this study, we describe an application of molecular modeling techniques to delineate common molecular determinants that might be related to coreceptor activity, and the use of the data to identify other GPCRs as putative cofactors for M-tropic HIV-1 entry. Subsequently, the results were confirmed by an experimental approach. The sequences of extracellular domains (ECDs) of CRs were employed in a compatibility search against a database of environmental profiles derived for proteins with known spatial structure. The best-scoring sequence-profile alignments obtained for each ECD were compared in pairs to check for common patterns in residue environments, and consensus sequence-profile fits for ECDs were also derived. Similar hydrophobicity motifs were found in the first extracellular loops of the CRs CCR5, CCR3, and CCR2B, and are all used by M-tropic HIV-1 for cell entry. In contrast, other CRs did not reveal common motifs. However, the same environmental pattern was also delineated in the first extracellular loop of some human GPCRs showing either high (group 1) or low (group 2) degree of similarity of their polarity patterns with those in HIV-1 coreceptors. To address the question of whether the delineated molecular determinant plays a critical role in the receptor-virus binding, three of the identified GPCRs, bradykinin receptor (BRB2) and G-protein receptor (GPR)-CY6 from group 1, and GPR8 from group 2, were cloned and transfected into HeLa-CD4 cells, which are nonpermissive to M-tropic HIV-1 infection. We demonstrate that, similar to CCR5, the two selected GPCRs from group 1 were capable of mediating M-tropic HIV-1 entry, whereas GPR8 from group 2 did not serve as HIV-1 coreceptor. The potential biological significance of the identified structural motif shared by the human CCR5, CCR3, CCR2B and other GPCRs is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.