Abstract
The female reproductive tract is a major site of HIV sexual transmission. We here examined whether human cervical epithelial cells (HCEs) can be immunologically activated and produce antiviral factors against HIV. We demonstrated that HCEs (End1/E6E7 cells) possess the functional toll-like receptor (TLR)3 signaling system, which could be activated by Poly I:C and induce multiple cellular HIV restriction factors. The treatment of primary human macrophages with supernatant (SN) from TLR3-activated End1/E6E7 cell cultures resulted in HIV inhibition. This SN-mediated HIV inhibition was mainly through the induction of interferons (IFN)-β and IFN-λs, as the antibodies to IFN-β or IFN-λs receptor could effectively block the SN-mediated anti-HIV effect. Further studies showed that the incubation of macrophages with SN from the activated cervical epithelial cell cultures induced the expression of a number of IFN-stimulated genes (ISGs), including IFN-stimulated gene (ISG15), ISG56, 2′, 5′-oligoadenylate synthetase 1 (OAS 1), OAS 2, Myxovirus Resistance A (MxA), MxB, and Guanylate-binding protein 5 (GBP5). In addition, TLR3-activated cells produced the CC chemokines [regulated on activation, normal T cell expressed and secreted (RANTES), Human macrophage inflammatory protein 1 alpha (MIP-1α), MIP-1β] the ligands of HIV entry co-receptor CCR5. These observations support further studies on HCEs as potentially crucial and alternative targets for immunological intervention to control and prevent HIV sexual transmission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.