Abstract

This study examined cerebrovascular reactivity and ventilation during step changes in CO(2) in humans. We hypothesized that: (1) end-tidal P(CO(2)) (P(ET,CO(2))) would overestimate arterial P(CO(2)) (P(a,CO(2))) during step variations in P(ET,CO(2)) and thus underestimate cerebrovascular CO(2) reactivity; and (2) since P(CO(2)) from the internal jugular vein (P(jv,CO(2))) better represents brain tissue P(CO(2)), cerebrovascular CO(2) reactivity would be higher when expressed against P(jv,CO(2)) than with P(a,CO(2)), and would be related to the degree of ventilatory change during hypercapnia. Incremental hypercapnia was achieved through 4 min administrations of 4% and 8% CO(2). Incremental hypocapnia involved two 4 min steps of hyperventilation to change P(ET,CO(2)), in an equal and opposite direction, to that incurred during hypercapnia. Arterial and internal jugular venous blood was sampled simultaneously at baseline and during each CO(2) step. Cerebrovascular reactivity to CO(2) was expressed as the percentage change in blood flow velocity in the middle cerebral artery (MCAv) per mmHg change in P(a,CO(2)) and P(jv,CO(2)). During hypercapnia, but not hypocapnia, P(ET,CO(2)) overestimated P(a,CO(2)) by +2.4 +/- 3.4 mmHg and underestimated MCAv-CO(2) reactivity (P < 0.05). The hypercapnic and hypocapnic MCAv-CO(2) reactivity was higher ( approximately 97% and approximately 24%, respectively) when expressed with P(jv,CO(2)) than P(a,CO(2)) (P < 0.05). The hypercapnic MCAv-P(jv,CO(2)) reactivity was inversely related to the increase in ventilatory change (R(2) = 0.43; P < 0.05), indicating that a reduced reactivity results in less central CO(2) washout and greater ventilatory stimulus. Differences in the P(ET,CO(2)), P(a,CO(2)) and P(jv,CO(2))-MCAv relationships have implications for the true representation and physiological interpretation of cerebrovascular CO(2) reactivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.