Abstract

A smart home needs to be human-centric, where it tries to fulfill human needs given the devices it has. Various works are developed to provide homes with reasoning and planning capability to fulfill goals, but most do not support complex sequence of plans or require significant manual effort in devising subplans. This is further aggravated by the need to optimize conflicting personal goals. A solution is to solve the planning problem represented as constraint satisfaction problem (CSP). But CSP uses hard constraints and, thus, cannot handle optimization and partial goal fulfillment efficiently. This paper aims to extend this approach to weighted CSP. Knowledge representation to help in generating planning rules is also proposed, as well as methods to improve performances. Case studies show that the system can provide intelligent and complex plans from activities generated from semantic annotations of the devices, as well as optimization to maximize personal constraints’ fulfillment. Note to Practitioners —Smart home should maximize the fulfillment of personal goals that are often conflicting. For example, it should try to fulfill as much as possible the requests made by both the mother and daughter who wants to watch TV but both having different channel preferences. That said, every person has a set of goals or constraints that they hope the smart home can fulfill. Therefore, human-centric system that automates the loosely coupled devices of the smart home to optimize the goals or constraints of individuals in the home is developed. Automated planning is done using converted services extracted from devices, where conversion is done using existing tools and concepts from Web technologies. Weighted constraint satisfaction that provides the declarative approach to cover large problem domain to realize the automated planner with optimization capability is proposed. Details to speed up planning through search space reduction are also given. Real-time case studies are run in a prototype smart home to demonstrate its applicability and intelligence, where every planning is performed under a maximum of 10 s. The vision of this paper is to be able to implement such system in a community, where devices everywhere can cooperate to ensure the well-being of the community.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call