Abstract

Abstract This work explores how to use an unmanned ground vehicle (UGV) to offload the physical burdens of equipment from humans. This work formulates dynamic alignment following and compares it to position-based following techniques. We describe the control strategies of both following methods and implement them in a dynamic simulation and a physical prototype. We test the performance of the two following methods and show that dynamic alignment following can reduce robot positional error and interaction force between the human and the robot. We then analyze the energetics and the performance of the human–UGV team for candidate transportation tasks. The presence of the robot can make some tasks take longer to perform. Nonetheless, the results show that for the candidate tasks, the robot can reduce human average metabolic power and average overall task energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.