Abstract

The progress in information retrieval, computer vision, and image analysis makes it possible to establish very complete bases of algorithms and operators. A specialist in remote sensing or image processing now has the tools that allow him, at least in theory, to configure applications solving complex problems of image understanding. However, in reality, earth observation (EO) data analysis is still performed in a very laborious way at the end of repeated cycles of trial and error. To overcome this, we proposed a novel advanced remote sensing information processing system knowledge-driven information mining (KIM). KIM is based on human-centered concepts (HCCs), which implements new features and functions allowing improved feature extraction, search on a semantic level, the availability of collected knowledge, interactive knowledge discovery, and new visual user interfaces. We assess the HCC methodology for solving several difficult tasks in EO image interpretation, using a broad variety of sensor data, from meter-resolution synthetic aperture radar and optical images to hyperspectral data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.