Abstract

Meniscus injuries are among the most common orthopedic injuries. Tears in the inner one‐third of the meniscus heal poorly and present a significant clinical challenge. In this study, we hypothesized that progenitor cells from healthy human articular cartilage (chondroprogenitor cells [C‐PCs]) may be more suitable than bone‐marrow mesenchymal stem cells (BM‐MSCs) to mediate bridging and reintegration of fibrocartilage tissue tears in meniscus. C‐PCs were isolated from healthy human articular cartilage based on their expression of mesenchymal stem/progenitor marker activated leukocyte cell adhesion molecule (ALCAM) (CD166). Our findings revealed that healthy human C‐PCs are CD166+, CD90+, CD54+, CD106‐ cells with multilineage differentiation potential, and elevated basal expression of chondrogenesis marker SOX‐9. We show that, similar to BM‐MSCs, C‐PCs are responsive to the chemokine stromal cell‐derived factor‐1 (SDF‐1) and they can successfully migrate to the area of meniscal tissue damage promoting collagen bridging across inner meniscal tears. In contrast to BM‐MSCs, C‐PCs maintained reduced expression of cellular hypertrophy marker collagen X in monolayer culture and in an explant organ culture model of meniscus repair. Treatment of C‐PCs with SDF‐1/CXCR4 pathway inhibitor AMD3100 disrupted cell localization to area of injury and prevented meniscus tissue bridging thereby indicating that the SDF‐1/CXCR4 axis is an important mediator of this repair process. This study suggests that C‐PCs from healthy human cartilage may potentially be a useful tool for fibrocartilage tissue repair/regeneration because they resist cellular hypertrophy and mobilize in response to chemokine signaling. stem cells 2019;37:102–114

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call