Abstract

Increased hydrolysis of cocaine to nontoxic compounds is a promising way to prevent cocaine-induced toxicity. However, the short half-life of cocaine in the blood and the rapid conversion in the body to the hydrolysis-resistant metabolite benzoylecgonine, limits the therapeutic potential of serum proteins. Therefore, hydrolysis by tissue-specific hydrolases that do not generate benzoylecgonine deserves further investigation. Here, we report for the first time the mechanism of cocaine hydrolysis by the human carboxylesterase 2. We have combined conventional and accelerated Molecular Dynamics, which allowed us to identify the structural motions of the α1 and α10’ helices that act as a putative lid. Quantum Mechanics/Molecular Mechanics calculations on the full cycle showed that the rate-limiting step is the formation of benzoic acid (deacylation step) with a ΔG of 19.5 kcal mol−1 when calculated with B3LYP-D3/6–311++G(d,p). This ΔG value is in close conformity with the experimental value of 19.7 kcal mol−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.