Abstract

Several studies showed that the orphan Bombesin Receptor Subtype-3 (BRS-3) – member of the bombesin receptor family – has an important role in glucose homeostasis (v.g.: BRS-3-KO mice developed mild obesity, and decreased levels of BRS-3 mRNA/protein have been described in muscle from obese (OB) and type 2 diabetic (T2D) patients). In this work, to gain insight into BRS-3 receptor cell signaling pathways, and its implication on glucose metabolism, primary cultured myocytes from normal subjects, OB or T2D patients were tested using high affinity ligand – [d-Tyr6,β-Ala11,Phe13,Nle14]bombesin6–14. In muscle cells from all metabolic conditions, the compound significantly increased not only MAPKs, p90RSK1, PKB and p70s6K phosphorylation levels, but also PI3K activity; moreover, it produced a dose–response stimulation of glycogen synthase a activity and glycogen synthesis. Myocytes from OB and T2D patients were more sensitive to the ligand than normal, and T2D cells even more than obese myocytes. These results widen the knowledge of human BRS-3 cell signaling pathways induced by a BRS-3 agonist, described its insulin-mimetic effects on glucose metabolism, showed the role of BRS-3 receptor in glucose homeostasis, and also propose the employing of BRS-3/ligand system, as participant in the obese and diabetic therapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.