Abstract

What is the topic of this review? It has been suggested that human brown adipose tissue (BAT) is more similar to the brite/beige adipose tissue of mice than to classical BAT of mice. The basis of this is discussed in relationship to the physiological conditions of standard experimental mice. What advances does it highlight? We highlight that, provided mouse adipose tissues are examined under physiological conditions closer to those prevalent for most humans, the gene expression profile of mouse classical BAT is more similar to that of human BAT than is the profile of mouse brite/beige adipose tissue. Human BAT is therefore not different in nature from classical mouse BAT. Since the presence of brown adipose tissue (BAT) was established in adult humans some 13years ago, its physiological significance and molecular characteristics have been discussed. In particular, it has been proposed that the mouse adipose tissue depot most closely resembling and molecularly parallel to human BAT is not classical mouse BAT. Instead, so-called brite or beige adipose tissue, which is characteristically observed in the inguinal 'white' adipose tissue depot of mice, has been proposed to be the closest mouse equivalent of human BAT. We summarize here the published evidence examining this question. We emphasize the differences in tissue appearance and tissue transcriptomes from 'standard' mice [young, chow fed and, in effect semi-cold exposed (20°C)] versus 'physiologically humanized' mice [middle-aged, high-fat diet-fed mice living at thermoneutrality (30°C)]. We find that in the physiologically humanized mice, classical BAT displays molecular and cellular characteristics that are more akin to human BAT than are those of brite/beige adipose tissues from either standard or physiologically humanized mice. We suggest, therefore, that mouse BAT is the more relevant tissue for translational studies. This is an invited summary of a presentation given at Physiology 2019 (Aberdeen).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call