Abstract

The extracellular matrix (ECM) plays a critical role in the development and invasion of primary breast tumors. Lysyl oxidase (LOX), which is an ECM remodeling enzyme, appears to play roles in promoting cancer cell motility and invasion. To ascertain whether LOX overexpression in breast tumor tissues from Asian patients is associated with decreases in metastasis-free and overall survival in breast cancer patients, the mRNA levels of LOX were examined in paired tumor/normal tissue samples using real-time RT-PCR analysis (n = 246 pair-matched samples). To test whether specifically targeting LOX by inhibiting its activity (using beta-aminopropionitrile (β-APN), a LOX inhibitor), mRNA expression (using siRNA), or protein expression (using 25 μM magnolol) attenuates the invasion of MDA-MB-231 breast cancer cells, a cancer cell migration assay was performed. Interestingly, only 78.5% (n = 193) of the breast cancer tumors displayed detectable LOX expression. Nearly 60% (n = 120) of the cases fell into Group 1 (tumor > normal, T > N); in this group, the mean LOX expression in the tumor cells was 20.2-fold greater than in normal cells. However, in Group 2 (normal > tumor, N > T), the LOX expression level in most of the normal tissues examined (80%, 59/73) was less than fivefold greater than in the tumor tissues. The increased level of active LOX in the invasive breast cancer cell line MDA-MB-231 was accompanied by the increased phosphorylation of focal adhesion kinase at Tyr-576 and of paxillin at Tyr-118. We also found that the addition of β-APN (300 μM) and magnolol (25 μM), synergistically inhibited the migration and invasion of MDA-MB-231 cells. In this article, we describe, for the first time, higher expression of a LOX protein in breast tumors compared with normal tissues from Asian patients. Moreover, the results indicate that the inhibition of LOX using magnolol may represent a more desirable strategy for breast cancer therapy than the use of β-APN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.