Abstract

Cell separation based on size by microfluidic devices has become a widely studied research area to facilitate the diagnosis of malaria and cancer, in particular. Conventional diagnostic systems are sophisticated but expensive; however, with microfluidic devices a broad range of laboratory applications can be accomplished in a hand-held device. In this work, we fabricate a series of devices as Dean force coupled curved mirochannels for separation of human breast cancer cell lines which are MCF-7 (~20 µm) and MD-MBA-231 (~15 µm). These curved channels were fabricated in four different dimensions: 400 µm wide × 81 µm high; 500 μm wide × 84 μm; 600 μm wide × 91 μm high; 700 μm wide × 86 μm high. These channels have one inlet and three outlets. Each channel experienced different flow rates to observe cell focusing and separation. The MCF-7 cell line was labeled with carboxyfluorescein succinimidyl ester, which has a fluorescence characteristic, whereas the MDA-MB-231 cell line was unlabeled. Fluorescence microscopy experiments were performed to determine the appropriate flow rates for focusing. The investigation of cell separation yield was performed by flow cytometry. Adjusting flow rates revealed that enrichment of MCF-7 cells requires very high flow rates. Flow cytometry analysis confirmed enrichment to occur at the second outlet of each channel. The efficiency of enrichment was observed in the microchannel with 500 µm width as high as 93 %. Our results suggest that these curved channels can be regarded as a prototype of a microfluidic diagnostic device due to their fast reaction time, relatively accurate results, low cost and miniaturized features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.