Abstract

After vascular injury, pericytes may function in blood coagulation events that lead to thrombin formation due to their subendothelial location in the microvasculature. Pericytes from human cerebral cortex microvessels were isolated and characterized, and their ability to express and regulate procoagulant enzyme complexes was determined. Tissue factor was detected on the cell surface of cultured human brain pericytes by immunocytochemistry and was shown to form a functional complex with factor (F) VIIa to effect both FIX and FX activation. Treatment of pericytes with the calcium ionophore A23187 increased the observed tissue factor activity twofold to fivefold, which was shown to be due to an enhancement of cofactor activity and not the release of endogenous antigen stores. Pericytes also provided the appropriate membrane surface required for the assembly of a functional prothrombinase complex, so that in the presence of FVa and FXa, they effected thrombin formation 50 to 100 times faster than any other cell examined to date. In marked contrast to observations in other cell systems, pericyte expression of prothrombinase activity remained unaltered after treatment with A23187. As has been shown for platelets, the membrane receptor on pericytes for FXa assembly into the prothrombinase complex appears to at least partially consist of the FXa receptor effector cell protease receptor-1. These combined data indicate that pericytes can activate and propagate the coagulant response through the extrinsic pathway and that the activities of the required enzyme complexes can be differentially regulated in response to agonist stimulation. These observations support the concept that pericytes may play an important role in regulating coagulation events after cerebrovascular injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.