Abstract
The blood–brain barrier (BBB) constitutes a distinctive and tightly regulated interface between the brain and the peripheral circulation. The objective of studies was to compare responses of human endothelial cells representing the model of blood vessels – EA.hy926 and HUVEC cells and the model of the brain endothelial barrier – HBEC5i cells to silver nanoparticles (SNPs). A contact of SNPs with endothelial cells resulted in a formation of SNP agglomerates. Consequently, the SNPs uptake by endothelial cells affected cell viability and membrane integrity however observed responses were different. Brain endothelial barrier HBEC5i cells were much less vulnerable to SNPs toxicity comparing to EA.hy926 and HUVEC cells. It can be ascribed to the presence of specialized cellular components of the brain barrier, protecting HBEC5i cells against toxic SNPs. Fundamental understanding of SNPs inducing the BBB dysfunction may initiate engineering novel SNPs which are safe for the BBB and thereby safe for the brain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nanomedicine: Nanotechnology, Biology, and Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.