Abstract

In brain, the regulatory mechanism of the endothelial reactivity to nitric oxide and endothelin-1 may involve Ca(2+), cytoskeleton, and vasodilator-stimulated phosphoprotein changes mediated by the cGMP/cGMP kinase system.(1) Endothelium of human brain capillaries or microvessels is used to examine the interplay of endothelin-1 with the putative vasorelaxant 2-arachidonoyl glycerol, an endogenous cannabimimetic derivative of arachidonic acid. This study demonstrates that 2-arachidonoyl glycerol counteracts Ca(2+) mobilization and cytoskeleton rearrangement induced by endothelin-1. This event is independent of nitric oxide, cyclooxygenase, and lipoxygenase and is mediated in part by cannabimimetic CB1 receptor, G protein, phosphoinositol signal transduction pathway, and Ca(2+)-activated K(+) channels. The induced rearrangements of cellular cytoskeleton (actin or vimentin) are partly prevented by inhibition of protein kinase C or high levels of potassium chloride. The 2-arachidonoyl glycerol-induced phosphorylation of vasodilator-stimulated phosphoprotein is mediated by cAMP. These findings suggest that 2-arachidonoyl glycerol may contribute to the regulation of cerebral capillary and microvascular function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.