Abstract

Rhythm as the time structure of music is composed of distinct temporal components such as pattern, meter, and tempo. Each feature requires different computational processes: meter involves representing repeating cycles of strong and weak beats; pattern involves representing intervals at each local time point which vary in length across segments and are linked hierarchically; and tempo requires representing frequency rates of underlying pulse structures. We explored whether distinct rhythmic elements engage different neural mechanisms by recording brain activity of adult musicians and non-musicians with positron emission tomography (PET) as they made covert same-different discriminations of (a) pairs of rhythmic, monotonic tone sequences representing changes in pattern, tempo, and meter, and (b) pairs of isochronous melodies. Common to pattern, meter, and tempo tasks were focal activities in right, or bilateral, areas of frontal, cingulate, parietal, prefrontal, temporal, and cerebellar cortices. Meter processing alone activated areas in right prefrontal and inferior frontal cortex associated with more cognitive and abstract representations. Pattern processing alone recruited right cortical areas involved in different kinds of auditory processing. Tempo processing alone engaged mechanisms subserving somatosensory and premotor information (e.g., posterior insula, postcentral gyrus). Melody produced activity different from the rhythm conditions (e.g., right anterior insula and various cerebellar areas). These exploratory findings suggest the outlines of some distinct neural components underlying the components of rhythmic structure.

Highlights

  • The perception and performance of music requires the ability to build a temporally ordered architecture of sound sequences in rapid succession

  • A closer look at the structure of these musical elements reveals that the single element of rhythm is not considered a singular unified component but a composite of temporal sub-elements which all contribute to the organization and perception of rhythm in music [14,15,16,17]

  • The question arises whether it is the case that are separate musical elements subserved by distinct neural systems and within a single musical element such as rhythm, distinct neural systems underlie the separate aspects of time processing within musical rhythm perception

Read more

Summary

Introduction

The perception and performance of music requires the ability to build a temporally ordered architecture of sound sequences in rapid succession. The complex processes underlying this ability have attracted accelerating research in ethology, developmental cognitive sciences, experimental psychology, neuroimaging, and behavioural neurology [1,2,3,4]. Recent neurological and neuroimaging data suggest that distinct neural systems subserve the melodic, harmonic, timbral, affective, and rhythmic aspects of music [5,6,7,8,9,10,11,12,13]. The question arises whether it is the case that are separate musical elements subserved by distinct neural systems and within a single musical element such as rhythm, distinct neural systems underlie the separate aspects of time processing within musical rhythm perception

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.