Abstract
To identify the BOLD effects related to olfaction in humans, we recorded functional magnetic resonance imaging (fMRI) scans in response intravenously instilled thiamine propyl disulfide (TPD) and thiamine tetrahydrofurfuryl disulfide monohydrochloride (TTFD). TPD and TTFD evoked a strong and weak odor sensation, respectively. Since we did not spray the odor stimuli directly, this method is expected to reduce the effect caused by direct stimulation of the trigeminal nerve. For the analysis of fMRI data, statistical parametric mapping (SPM2) was employed and the areas significantly activated during olfactory processing were located. Both strong and weak odorants induced brain activities mainly in the orbitofrontal gyrus (Brodmann's area: BA 11) in the left hemisphere. TPD (a strong odorant) induced activity in the subthalamic nucleus in the left hemisphere and the precentral gyrus (BA 6) and insula in the right hemisphere. TTFD (a weak odorant) induced activity in the superior frontal gyrus (BA 11) in the right hemisphere. In both circumstances, there was an increase in blood flow at the secondary olfactory cortex (SOC) but not the primary olfactory cortex (POC), probably due to a habituation effect in the POC. From the present results, we found brain activity in not only odor-specific regions but also regions whose levels of activity were changed by an intensity difference of odor stimuli.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.