Abstract

A blood-brain barrier (BBB) on a chip similar to the in vivo BBB is important for evaluating the efficacy of reparative cell therapeutics for ischemic stroke in vitro. In this study, we established human BBB-like microvasculature on an angiogenesis microfluidic chip and analyzed the role of human pericytes (hPCs) and human astrocytes (hACs) on the architecture of human brain microvascular endothelial cells (hBMEC)-derived microvasculature on a chip. We found that human bone marrow mesenchymal stem cells (hBM-MSCs) play a role as perivascular pericytes in tight BBB reformation with a better vessel-constrictive capacity than that of hPCs, providing evidence of reparative stem cells on BBB repair rather than a paracrine effect. We also demonstrated that pericytes play an important role in vessel constriction, and astrocytes may induce the maturation of a capillary network. Higher expression of VEGF, SDF-1α, PDGFRβ, N-cadherin, and α-SMA in hBM-MSCs than in hPCs and their subsequent downregulation with hBMEC co-culture suggest that hBM-MSCs may be better recruited and engaged in the BBB-microvasculature than hPCs. Collectively, the human BBB on a chip may be adopted as an alternative to evaluate in vitro cellular behavior and the engagement of cell therapeutics in BBB regeneration and may also be used for studying stroke.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.