Abstract

3-Methylcrotonyl-CoA carboxylase (MCCase; EC 6.4.1.4) is a mitochondrial biotin enzyme and plays an essential role in the catabolism of leucine and isovalerate in animals, bacterial species, and plants. MCCase consists of two subunits, those that are biotin-containing and non-biotin-containing. The genes responsible for these subunits have been isolated in soybean, Arabidopsis thaliana, and tomatoes, but not in mammals. In humans, MCCase deficiency has been thought to be a rare metabolic disease, but the number of patients with MCCase deficiency appears to be increasing with a wide range of clinical presentations, some that result in a lethal condition and others that are asymptomatic. In this report, we have isolated and carried out chromosomal mapping of the gene for the biotin-containing subunit (A subunit) of the human MCCase gene, MCCA. The cDNA predicts an open reading frame coding for a 725-amino-acid protein with mitochondrial signal peptide, biotin carboxylase, and biotin-carrier domains. The gene is composed of at least 19 exons and covers more than 70 kb of sequence on band q27 of chromosome 3. MCCA was abundantly expressed in mitochondria-rich organs, such as the heart, skeletal muscles, kidney, and liver. In exon 13, we observed a His/Pro polymorphism at codon 464 (an A to C transition at nucleotide position 1391 in the cDNA sequence). Then, we determined the DNA sequences of the 5′ untranslated region and entire coding regions in two patients with MCCase deficiency, but no sequence substitution was detected, suggesting that the gene mutations might be in the non-biotin-containing subunit (B subunit) gene, MCCB, in these patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.