Abstract
This study builds on the seminal work of Tversky and Kahneman (1974), exploring the presence and extent of anchoring bias in forecasts generated by four Large Language Models (LLMs): GPT-4, Claude 2, Gemini Pro and GPT-3.5. In contrast to recent findings of advanced reasoning capabilities in LLMs, our randomised controlled trials reveal the presence of anchoring bias across all models: forecasts are significantly influenced by prior mention of high or low values. We examine two mitigation prompting strategies, ‘Chain of Thought’ and ‘ignore previous’, finding limited and varying degrees of effectiveness. Our results extend the anchoring bias research in finance beyond human decision-making to encompass LLMs, highlighting the importance of deliberate and informed prompting in AI forecasting in both ad hoc LLM use and in crafting few-shot examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.