Abstract

<span lang="EN-US">Now days, the analysis of the behavior of cardholders is one of the important fields in electronic payment. This kind of analysis helps to extract behavioral and transaction profile patterns that can help financial systems to better protect their customers. In this paper, we propose an intelligent machine learning (ML) system for rules generation. It is based on a hybrid approach using rough set theory for feature selection, fuzzy logic and association rules for rules generation. A score function is defined and computed for each transaction based on the number of rules, that make this transaction suspicious. This score is kind of risk factor used to measure the level of awareness of the transaction and to improve a card fraud detection system in general. The behavior analysis level is a part of a whole financial fraud detection system where it is combined to intelligent classification to improve the fraud detection. In this work, we also propose an implementation of this system integrating the behavioral layer. The system results obtained are very convincing and the consumed time by our system, per transaction was 6 ms, which prove that our system is able to handle real time process.</span>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.