Abstract
Human behavior recognition technology is widely adopted in intelligent surveillance, human-machine interaction, video retrieval, and ambient intelligence applications. To achieve efficient and accurate human behavior recognition, a unique approach based on the hierarchical patches descriptor (HPD) and approximate locality-constrained linear coding (ALLC) algorithm is proposed. The HPD is a detailed local feature description, and ALLC is a fast coding method, which makes it more computationally efficient than some competitive feature-coding methods. Firstly, energy image species were calculated to describe human behavior in a global manner. Secondly, an HPD was constructed to describe human behaviors in detail through the spatial pyramid matching method. Finally, ALLC was employed to encode the patches of each level, and a feature coding with good structural characteristics and local sparsity smoothness was obtained for recognition. The recognition experimental results on both Weizmann and DHA datasets demonstrated that the accuracy of five energy image species combined with HPD and ALLC was relatively high, scoring 100% in motion history image (MHI), 98.77% in motion energy image (MEI), 93.28% in average motion energy image (AMEI), 94.68% in enhanced motion energy image (EMEI), and 95.62% in motion entropy image (MEnI).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.