Abstract

The present work investigates whether and how decisions in real-world online shopping scenarios can be predicted based on brain activation. Potential customers were asked to search through product pages on e-commerce platforms and decide, which products to buy, while their EEG signal was recorded. Machine learning algorithms were then trained to distinguish between EEG activation when viewing products that are later bought or put into the shopping card as opposed to products that are later discarded. We find that Hjorth parameters extracted from the raw EEG can be used to predict purchase choices to a high level of accuracy. Above-chance predictions based on Hjorth parameters are achieved via different standard machine learning methods with random forest models showing the best performance of above 80% prediction accuracy in both 2-class (bought or put into card vs. not bought) and 3-class (bought vs. put into card vs. not bought) classification. While conventional EEG signal analysis commonly employs frequency domain features such as alpha or theta power and phase, Hjorth parameters use time domain signals, which can be calculated rapidly with little computational cost. Given the presented evidence that Hjorth parameters are suitable for the prediction of complex behaviors, their potential and remaining challenges for implementation in real-time applications are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call