Abstract

In the standard Hughson-Westlake hearing tests (Carhart and Jerger 1959), patient responses like a button press, raised hand, or verbal response are used to assess detection of brief test signals such as tones of varying pitch and level. Because of its reliance on voluntary responses, Hughson-Westlake audiometry is not suitable for patients who cannot follow instructions reliably, such as pre-lingual infants (Northern and Downs 2002). As an alternative approach, we explored the use of the pupillary dilation response (PDR), a short-latency component of the orienting response evoked by novel stimuli, as an indicator of sound detection. The pupils of 31 adult participants (median age 24 years) were monitored with an infrared video camera during a standard hearing test in which they indicated by button press whether or not they heard narrowband noises centered at 1, 2, 4, and 8 kHz. Tests were conducted in a quiet, carpeted office. Pupil size was summed over the first 1750 ms after stimulus delivery, excluding later dilations linked to expenditure of cognitive effort (Kahneman and Beatty 1966; Kahneman et al. 1969). The PDR yielded thresholds comparable to the standard test at all center frequencies tested, suggesting that the PDR is as sensitive as traditional methods of assessing detection. We also tested the effects of repeating a stimulus on the habituation of the PDR. Results showed that habituation can be minimized by operating at near-threshold stimulus levels. At sound levels well above threshold, the PDR habituated but could be recovered by changing the frequency or sound level, suggesting that the PDR can also be used to test stimulus discrimination. Given these features, the PDR may be useful as an audiometric tool or as a means of assessing auditory discrimination in those who cannot produce a reliable voluntary response.

Highlights

  • Human hearing is typically evaluated using the voluntary reports of patients or research subjects

  • We explored the use of the pupillary dilation response (PDR), a short-latency component of the orienting response evoked by novel stimuli, as an indicator of sound detection

  • The PDR is a component of the orienting response evoked by novel stimuli and is part of a suite of “covert” responses such as changes in skin conductance and changes in heart rate, which accompany overt orienting such as the turning of the head, eyes, and ears in the direction of the novel stimulus (Liberman 1958; Sokolov 1963; van Olst 1971)

Read more

Summary

Introduction

Human hearing is typically evaluated using the voluntary reports of patients or research subjects. Whether clinical or research, voluntary reports are infeasible either because the patient or subject cannot be expected to follow the instructions reliably, or because instructions are incompatible with the research question or procedure. In such cases, clinicians and researchers may use physiological tests where appropriate. We propose here an alternative technique for assessing auditory detection, based on an autonomic response, the acoustically evoked pupillary dilation response (PDR), which requires no voluntary reports on the part of subject or patient.

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call