Abstract

Biodegradable macroporous gelatin microcarriers fixed with blood-derived biodegradable glue are proposed as a delivery system for human autologous chondrocytes. Cell-seeded microcarriers were embedded in four biological glues-recalcified citrated whole blood, recalcified citrated plasma with or without platelets, and a commercially available fibrin glue-and cultured in an in vitro model under static conditions for 16 weeks. No differences could be verified between the commercial fibrin glue and the blood-derived alternatives. Five further experiments were conducted with recalcified citrated platelet-rich plasma alone as microcarrier sealant, using two different in vitro culture models and chondrocytes from three additional donors. The microcarriers supported chondrocyte adhesion and expansion as well as extracellular matrix (ECM) synthesis. Matrix formation occurred predominantly at sample surfaces under the static conditions. The presence of microcarriers proved essential for the glues to support the structural takeover of ECM proteins produced by the embedded chondrocytes, as exclusion of the microcarriers resulted in unstable structures that dissolved before matrix formation could occur. Immunohistochemical analysis revealed the presence of SOX-9- and S-100-positive chondrocytes as well as the production of aggrecan and collagen type I, but not of the cartilage-specific collagen type II. These results imply that blood-derived glues are indeed potentially applicable for encapsulation of chondrocyte-seeded microcarriers. However, the static in vitro models used in this study proved incapable of supporting cartilage formation throughout the engineered constructs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call