Abstract

AbstractTargeted RNases (TRs) are immunoenzymes with ribonucleases as cytotoxic effector domains, which are less immunogenic as plant or bacterial toxin components of classical immunotoxins. In this study, we show the generation and production of the first entirely human TR (huTR) directed against CD30+ lymphomas. The scFv-Fc-RNase construct was produced in human embryonic kidney (HEK) 293T cells, yielding up to 4 mg/L soluble protein after purification by protein A affinity chromatography. Size exclusion chromatography revealed a homodimer of the predicted molecular mass. Surface plasmon resonance analysis revealed an affinity to CD30 of KD of less than 1 nM for both the scFv-Fc and the scFv-Fc-RNase proteins. Internalization of the scFv-Fc-RNase protein by CD30+ Karpas-299 cells was demonstrated by confocal microscopy. Proliferation of the CD30+ lymphoma cell line Karpas-299 was strongly inhibited by CD30-specific huTR protein (IC50 = 3.3 nM). The huTR is a promising candidate for the immunotherapy of CD30+ lymphomas because of its expected low immunogenicity, good production yields, and potent effector function upon target cell binding and internalization. Its modular design is set to target other internalizing tumor antigens using different antibody domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.