Abstract

Results of studies of rodent skeletal muscle plasticity are often extrapolated to humans. However, responses to "disuse" may be species specific, in part because of different inherent properties of anatomically similar muscles. Thus, this study quantified human and rat m. vastus lateralis (VL) fiber adaptations to 11 weeks of spinal cord injury (SCI). The m. VL was taken from 8 young (54 d) male Charles River rats after T-9 laminectomy (n = 4) or sham surgery (n = 4). In addition, the m. VL was biopsied in 7 able-bodied and in 7 SCI humans (31.3 +/- 4.7 years, mean +/- SE). Samples were sectioned and fibers were analyzed for type (I, IIa, IIb/x), cross-sectional area (CSA), succinate dehydrogenase (SDH), alpha-glycerol-phosphate dehydrogenase (GPDH), and actomyosin adenosine triphosphatase (qATPase) activities. Rat fibers had 1.5- to 2-fold greater SDH and GPDH activities while their fibers were 60% the size of those in humans. The most striking differences, however, were the absence of slow fibers in the rat and its four-fold greater proportion of IIb/x fibers (80% vs. 16% of the CSA) compared to humans. SCI decreased SDH activity more in rats whereas atrophy and IIa to IIb/x fiber shift occurred to a greater extent in humans. It is suggested that the rat is a reasonable model for studying the predominant response to SCI, atrophy. However, its high proportion of IIb/x fibers limits evaluation of the mechanical consequences of shifting to "faster" contractile machinery after SCI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.