Abstract
Modern games are among the most intricate pieces of software ever devised. However, artists have little to no means of porting their creative work from title to title as the aesthetics change and older models grow to look obsolete. Zooming into the topic of assisted game art generation, the literature is notably scarce, although advances towards automated asset generation are of paramount interest to the field. In this work, we investigate the use of deep learning algorithms to create pixel art sprites from line art sketches to produce artwork of sufficient quality to be used within a game product with little to no manual editing by human artists. Such a problem contrasts with well-known tasks studied in the literature, which are based on natural pictures, boast massive datasets, and are much more tolerant to noise. In addition, we conducted a case study of applying current technology to the drawing pipeline of an upcoming game title, attaining useful and positive results that may fast-track the game development, supporting the argument that current image generation state-of-the-art is ready to be used in some real-world tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.