Abstract

Human amniotic fluid collected during amniocentesis contains a heterogeneous population of differentiated and undifferentiated cells. Properties and number of these cells vary depending on the gestational age and the presence of potential fetal pathologies. The aim of this study was to analyze the effects of maternal, fetal, and environmental factors on the success rates of amniotic fluid stem cell cultures, the number of human amniotic fluid stem cells (hAFSC), their growth rates in primary cultures, and the number of cell passages. The study included 355 patients qualified for genetic amniocentesis at the Prenatal Genetic Unit, Department of Obstetrics, Gynecology and Oncologic Gynecology, Nicolaus Copernicus University Medical College in Bydgoszcz in 2011–2017. The mean age of the study participants was 34 ± 6.2 years, and mean gravidity amounted to 2.48 ± 1.4. Amniotic fluid sample volume turned out to be a highly significant (p < 0.01) predictor of culture success, and the relationship was particularly evident in women older than 40 years. Another highly significant predictor of culture success was the presence of two cell populations in the sample (p < 0.01). The likelihood of culture success correlated significantly (p < 0.05) with the season of the year at the time of amniocentesis. The number of cell passages differed significantly depending on the maternal age (p < 0.01). The number of passages also showed a highly significant relationship with the season of the year the sample was obtained (p < 0.01). Younger maternal age was identified as a determinant of high passage number (≥3), and another highly significant determinant of high passage number was the presence of two cell populations in the amniotic fluid sample (p < 0.01). Percentage of successfully established hAFSC cultures and the number of passages depended on amniotic fluid volume, the presence of two cell populations within the sample, and the season of the year. Individual characteristics of the donors, such as age and gravidity, did not exert a significant effect on the number of isolated hAFSCs and the rate of their growth. Patients’ place of residence, fetal karyotype, transportation time, and purity of the samples did not affect the success rates for primary cultures and the number of passages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.