Abstract

Acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), are characterised by high-protein pulmonary edema and severe hypoxaemic respiratory failure due to increased permeability of pulmonary microvascular endothelial cells (PMVEC). Alveolar epithelial cells (AEC) contribute importantly to normal alveolar function, and AEC dysfunction in ALI/ARDS is associated with worse outcomes. We hypothesized that AEC can modulate human PMVEC barrier function, and investigated the effects of AEC presence on human PMVEC barrier under septic conditions in vitro. PMVEC isolated from human lung were treated in vitro with septic stimulation (lipopolysaccharide [LPS], a mixture of clinically-relevant cytokines [cytomix], or plasma from patients with severe sepsis), and the trans-PMVEC leak of Evans Blue dye-labeled albumin assessed. PMVEC septic responses were compared in the presence/absence of co-cultured A549 epithelial cell line or primary human AEC. Septic stimulation with LPS, cytomix, or septic plasma induced marked PMVEC hyper-permeability (10.2±1.8, 8.9±2.2, and 3.7±0.2 fold-increase vs. control, respectively, p<0.01 for all). The presence of A549 cells or primary human AEC in a non-contact co-culture model attenuated septic PMVEC hyper-permeability by 39±4% to 100±3%, depending on the septic stimulation (p<0.05). Septic PMVEC hyper-permeability was also attenuated following treatment with culture medium conditioned by previous incubation with either naïve or cytomix-treated A549 cells (p<0.05), and this protective effect of A549 cell-conditioned medium was both heat-stable and transferable following lipid extraction. Cytomix-stimulated PMN-dependent PMVEC hyper-permeability and trans-PMVEC PMN migration were also inhibited in the presence of A549 cells or A549 cell-conditioned medium (p<0.05). Human AEC appear to protect human PMVEC barrier function under septic conditions in vitro, through release of a soluble mediator(s), which are at least partly lipid in nature. This study suggests a scientific and potential clinical therapeutic importance of epithelial-endothelial cross talk in maintaining alveolar integrity in ALI/ARDS.

Highlights

  • Acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), remain major causes of morbidity and mortality in critically ill patients

  • The potential effects of A549 cells on septic pulmonary microvascular endothelial cell (PMVEC) hyper-permeability were assessed in a PMVEC/A549 cell non-contact co-culture model, by culturing human PMVEC on cell-culture inserts in the presence vs absence of A549 cells in the lower chamber

  • Septic treatment of human pulmonary microvascular endothelial cells in vitro with LPS or cytomix increased trans-PMVEC albumin leak. This septic PMVEC hyper-permeability was markedly attenuated by co-culture with A549 cells, a human alveolar epithelial cell line, both in a PMVEC/A549 cell bilayer and in a non-contact PMVEC/A549 cell co-culture model

Read more

Summary

Introduction

Acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), remain major causes of morbidity and mortality in critically ill patients. ALI/ARDS are characterized by high-protein pulmonary edema and severe hypoxemic respiratory failure [1,2,3] and may result from many clinical insults, including sepsis and pneumonia. Pulmonary microvascular endothelial cell (PMVEC) injury and barrier dysfunction results in the leak of protein-rich edema fluid and circulating neutrophils into the pulmonary interstitium and alveolar spaces [5,6,7]. Tumour necrosis factor [TNF] a, interleukin [IL] 1b), as well as inflammatory cells, including circulating neutrophils and pulmonary-resident alveolar macrophages [6,8,9,10,11] PMVEC hyper-permeability during sepsis/ALI is the result of a complex interaction of PMVEC with many soluble factors, such as bacterial lipopolysaccharide (LPS) and endogenous pro-inflammatory cytokines (eg. tumour necrosis factor [TNF] a, interleukin [IL] 1b), as well as inflammatory cells, including circulating neutrophils and pulmonary-resident alveolar macrophages [6,8,9,10,11]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call