Abstract

Mucus hypersecretion is a common feature in chronic airway diseases, and serine proteases play a critical role in this process. However, the mechanisms by which serine proteases induce mucin5AC hypersecretion have not been fully explored. In this study, we characterized human airway trypsin-like protease (HAT), a serine protease that is found in the mucoid sputum of patients with chronic airway diseases and is an agonist of protease-activated receptor 2 (PAR2)-induced cellular responses in human bronchial epithelial cells (16HBE). We also investigated the potential involvement of PAR2 in this process. We found that both HAT and PAR2-AP enhance the exocytosis of mucin5AC protein, whereas HAT, but not PAR2-AP, enhances the expression of mucin5AC mRNA. PAR2 is expressed at a much higher level in the cells than the other three PARs. Transfection with an siRNA against the PAR2 receptor or Gαq/11 protein or pretreatment with the Gαq/11 protein inhibitor YM-254890, the PLC inhibitor U73122 or the intracellular Ca2+ chelator BAPTA-AM all effectively attenuated the HAT-induced cellular responses. Taken together, these results indicate that HAT can stimulate mucin5AC hypersecretion through a PAR2-mediated signaling pathway in 16HBE cells. Thus, PAR2 could represent a novel therapeutic target for chronic airway diseases with mucus hypersecretion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call